
Intelligent Agent Supporting Human-Multi-Robot Team Collaboration∗

Ariel Rosenfeld1,†, Noa Agmon1, Oleg Maksimov1 Amos Azaria2, Sarit Kraus1
1 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel 52900.
2 Machine Learning Department, Carnegie Mellon University, Pittsburgh, USA.

† Corresponding author, rosenfa5@cs.biu.ac.il.

Abstract
The number of multi-robot systems deployed in
field applications has risen dramatically over the
years. Nevertheless, supervising and operating
multiple robots at once is a difficult task for a sin-
gle operator to execute. In this paper we propose
a novel approach for utilizing advising automated
agents when assisting an operator to better man-
age a team of multiple robots in complex envi-
ronments. We introduce the Myopic Advice Opti-
mization (MYAO) Problem and exemplify its im-
plementation using an agent for the Search And
Rescue (SAR) task. Our intelligent advising agent
was evaluated through extensive field trials, with 44
non-expert human operators and 10 low-cost mo-
bile robots, in simulation and physical deployment,
and showed a significant improvement in both team
performance and the operator’s satisfaction.

1 Introduction
Multi-robot systems are being applied to different tasks, such
as Search And Rescue (SAR) [Liu and Nejat, 2013], auto-
matic aircraft towing [Morris et al., 2015], fire-fighting [Saez-
Pons et al., 2010], underwater missions [Kulkarni and Pom-
pili, 2010] and construction [Parker and Zhang, 2002]. Com-
mon to most of the work in multi-robot systems is the as-
sumption that either the robots are autonomous, or they are
controlled centrally by one computer. A hidden assumption
in this case is that the robots perform relatively smoothly, with
the infrequent need to overcome failures.

The deployment of low-cost robots in real-world environ-
ments has shown that they usually face difficulties in complet-
ing their tasks. Specifically, failures are common. In such sit-
uations, a human operator must get involved in order to solve
the problem. That is, robots are usually semi-autonomous,
and should be supported by an operator whenever they can-
not handle the situation autonomously. For example, during
the deployment of robots at the World Trade Center disaster,
each robot got stuck 2.1 times per minute (on average), and
required human assistance [Casper and Murphy, 2003].

In the context of multi-robot systems, the supervision and
control of multiple robots at once can be overwhelming for

∗We thank Cogniteam Ltd. for all their support.

a single human operator—resulting in sub-optimal use of the
robots and a high cognitive workload [Chen and Terrence,
2009; Squire and Parasuraman, 2010]. Wang et al. [2009]
claimed that this fan-out (the number of robots that a human
operator can effectively operate at once) plateau lies “some-
where between 4 and 9+ robots depending on the level of
robot autonomy and environmental demands”.

Improving the performance of supervised multi-robot sys-
tems can be done using one of the following dominant ap-
proaches: Either (1) Improving the robot’s hardware and
software—thus, relying less on human supervision (making
the robots more autonomous), or (2) Improving the efficiency
of the Human-Robot Interaction (HRI). Assuming we are
given a team of robots, and we cannot control the reliability
of its hardware or software, this paper deals with improving
the HRI in order to allow a person to control a team of many
(possibly unreliable) robots.

As shown in most multi-robot systems controlled by a hu-
man operator, a single operator may get overwhelmed by the
number of requests and messages, resulting in sub-optimal
performance. For example, Chien et al. [Chien et al., 2013]
have studied robots that could self-report encountered faults.
In their reported experiment, participants performed the for-
aging task while assisted by an alarm system, under differ-
ent task loads (3 robots vs. 6 robots). The results show
that participants in the 6-robots scenario did not perform
better than those controlling only 3, while some even per-
formed significantly worse. The results also show that oper-
ators devoted their resources in a sub-optimal way, leaving
fewer resources for more urgent and critical tasks. These
findings are consistent with previous studies with ground
robots [Velagapudi and Scerri, 2009; Wang et al., 2009;
Chen et al., 2011; Squire and Parasuraman, 2010; Lewis,
2013] and areal robots [Miller, 2004; Cummings et al., 2007;
Panganiban, 2013]. Rosenthal and Veloso [2010] suggest a
different approach, in which robots should request (and re-
ceive) help from humans for actions they could not have per-
formed alone due to lack of capabilities. However, in the
presence of many robots’ requests, Rosenthal and Veloso’s
approach could (potentially) overwhelm an operator.

In this paper, we present a novel methodology that en-
hances operators’ performance by using an intelligent ad-
vising agent. The agent provides advice for the opera-
tor regarding which actions she should take and acts as a



smart filter between the robots’ requests and the human op-
erator. Our methodology is not restricted to any certain
hardware or algorithm used by the robots, and we consider
these factors constants. Intelligent advising agents have been
successfully implemented in different domains, for exam-
ple [Rosenfeld and Kraus, 2015; Rosenfeld et al., 2015;
Azaria et al., 2015]. However, to the best of our knowledge,
this is the first work on utilizing advising agent technology in
the HRI field.

We will first present the Myopic Advice Optimization
(MYAO) Problem. The optimization problem models the
maximization of the operator’s performance by selecting
when and which advice to provide in a greedy fashion. Then,
we evaluate our approach using the SAR task. In the SAR
task, a single human operator has to search for certain ob-
jects1 using a large team of unreliable robots (see [Liu and
Nejat, 2013] for a review on SAR settings). We present an
intelligent advising agent which solves the MYAO problem
(adapted to our SAR task).

We assume non-expert operators, which are common in
many real world applications. For example, fire-fighters
which deploy robots in burning buildings to detect flame
sources or human victims cannot be expected to train solely
on the control of robots and cannot be considered to be ex-
perts. Furthermore, we could not expect a fire-squad to have
a robot expert in every given moment of the watch. Never-
theless, we assume that the operator has decent technological
skills and underwent some (basic) training with the robots.

We have tested extensively the performance of our advis-
ing agent in both simulated environments (using the Gazebo
robot simulation toolbox2) and physical deployment (using
Hamster robots (Figure 2)) with 44 non-expert operators. Ex-
perimental results show that our advising agent was able to
enhance the operators’ performance when managing a team
of 10 mobile robots in terms of the task’s goals (finding and
correctly classifying green objects in a clustered terrain) and
reduced the cognitive workload reported by the operators in
two distinct SAR environments: an office building floor and
a simulated urban open terrain. On average, while equipped
with our agent, an operator covered 19.5% more terrain, de-
tected and correctly classified 16.7% more desired objects, re-
ported 7% less workload (using NASA-TLX [Hart and Stave-
land, 1988]) and reduced 22.3% of the robots’ idle time, com-
pared to her benchmark performance without our agent while
operating 10 mobile robots. Despite training with simple sim-
ulated environments, our agent has shown that it is able to
provide solid advice in both complex simulated environments
and physical deployment.

The main contribution of the paper is in showing, for the
first time, that an intelligent agent that supports the opera-
tor can lead to better performance of the human-multi-robot
team.

A short video of the project is available at
http://vimeo.com/119434903.

1The objects can be victims, flames, weapons, etc.
2http://www.gazebosim.org/

2 The Advice Optimization Problem
In this work we consider a set of N semi-autonomous robots
engaged in a cooperative task, supervised and controlled by a
single, non-expert human operator, denoted by O. The state
space S consists of all information regarding the robots (e.g.,
robot location, battery capacity, operational status) which is
domain specific (an instance of the state space is denoted by
s ∈ S). The operator, O, can perform actions during the task
from a predefined set—A. Note that O can choose to execute
no actions, i.e., NULL ∈ A. Advice is defined as a possible
action a ∈ A suggested by the system for the operator to
perform (note that the operator is not obligated to accept the
advice, i.e., to perform this action).

In state s, the operator, according to his abilities, endures
a cost (usually in terms of time) for performing action a, de-
noted by Co(s, a). If a is infeasible in state s (defined by
the domain characteristics), then Co(s, a) = ∞. We assume
that Co(s,NULL) = 0. We refer to this cost function as the
operator model.

The transition function, denoted by
Po(s1, a, s2, Co(s1, a)), provides the probability of reaching
state s2 given action a in state s1 and the operator model.

The reward function, Ro(s), provides a real value repre-
senting the expected reward of state s in terms of task fulfill-
ment. For example, in a janitorial task, one can define Ro(s)
to be the expected time to finish cleaning the terrain given the
current state s.
γ ∈ (0, 1] is the discount factor, which represents the im-

portance difference between future (uncertain) rewards and
present rewards. For instance, γ can capture the uncertainty
of receiving future rewards.

Ideally, we would like the operator to execute the optimal
policy π∗o : S → Awhich maximizes the expected accumula-
tive reward given S,A, Po(·), Ro(·), Co(·) and γ. Finding π∗o
naturally translates into a Markov Decision Process (MDP)
[White III and White, 1989] consisting of state space S, ac-
tion space A, transition function Po, discount factor γ and a
reward function determined by Ro and Co. However, calcu-
lating π∗o is generally intractable, due to the exponential size
of the state space and the high uncertainty induced by the
environment, robots and inexperienced operators, making it
extremely challenging to use the appropriate MDP. This dif-
ficulty also stems from the complexity of many multi-robot
problems, such as the NP-hard task allocation problem [Kor-
sah et al., 2013] and the terrain coverage problem [Zheng et
al., 2010].

In order to cope with the aforementioned factors and adapt
in real-time to the dynamically changing environment, we
consider a more tractable advising problem which uses a my-
opic heuristic.
2.1 The Myopic Advice Optimization Problem
The Myopic (minimization3) Advice Optimization (MYAO)
Problem is defined as follows.

Given state s ∈ S, offer advice a∗ such that:

a∗ = argminaγ
Co(s,a)·

∫
s′∈S

Po(s, a, s
′, Co(s, a))·Ro(s

′)ds′

3The maximization form uses argmax instead.



At time t, a∗—which minimizes (maximizes) the expected
short-term reward – is selected (See Algorithm 1). By def-
inition, a∗ is relatively simple to calculate and comprehend
given s at current time t. This property holds an additional
advantage as people are more likely to adhere to an agent’s
advice which they can understand [Elmalech et al., 2015].

Algorithm 1 Advice Provision
1: s← InitialState()
2: repeat
3: min←∞
4: for each a ∈ A do
5: expRwd← Es′∈S [R(s

′)]
6: if γC(s,a) · expRwd ≤ min then
7: advice← a
8: min← γC(s,a) · expRwd
9: OUTPUTadvice

10: Spin(k−millisec).
11: s← GetCurrentState()
12: until TerminalCondition(s)

3 Search And Rescue
In this section, we instantiate the MYAO problem (Section
2.1) to the Search And Rescue (SAR) task. We will first de-
scribe the SAR task in detail, followed by our agent design.
3.1 The SAR Task
In our SAR environment, the operator remotely supervises
and controls 10 unmanned ground robots using a computer
program (See Figure 3). The operator is required to find and
correctly classify green objects in a clustered terrain.

Our SAR task is conducted in two distinct environments:
Environment 1 – An office building floor consisting of an
“L” shaped narrow corridor with small and mid-sized offices
(See Figure 4). We evaluate Environment 1 in both simulation
and physical deployment. We denote the simulation as Envi-
ronment 1s and the physical deployment as Environment 1p.
Environment 2 – A medium-sized warehouse yard taken
from the popular CounterStrike c© computer game called “As-
sault”. “Assault” is considered to be very realistic and is one
of the most popular maps in the whole CounterStrike c© se-
ries4 (See Figure 1). Environment 2 was only evaluated in
simulation and will be denoted as Environment 2s.

Figure 1: Environment 2s; an open terrain model from
CounterStrike c©.

We used 10 Hamster AUGVs (autonomous unmanned
ground vehicles) (See Figure 2). Hamster is a 4WD rugged
platform with a built-in navigation algorithm that allows it to
explore, map and localize in unknown areas. Hamster has 2
on-board Raspberry PI Linux servers for algorithm execution
and an Arduino for low level control. Hamster is mounted

4http://counterstrike.wikia.com/wiki/Assault

with an HD camera with h264 video streaming over WiFi and
a 360◦ 6-meter range LIDAR laser. Each Hamster is 190mm
in width, 240mm in length and 150mm in height.

Figure 2: Hamster AUGV; one of the 10 identical robots used
in this study.

The Hamster can be either in autonomous mode or man-
ual mode. While in autonomous mode, the Hamster travels
through the terrain without the operator’s intervention. In our
task, the robots are required to explore the environment, given
a 2D blueprint of the area (no mapping is required). How-
ever, the blueprint does not include randomly placed objects
and obstacles scattered in the environment, for example book-
stands and cupboards in Environment 1 and containers and
barrels in Environment 2. The robots are given their initial po-
sition (deployment point) and localize using ICP laser match-
ing [Besl and McKay, 1992] and the AMCL algorithm5.

The robots execute a simple exploration algorithm, based
on the given map. Given an estimation of the location of all
robots in the team, a robot simply chooses to travel away from
its peers, to a less crowded area (thus, a less explored area).
The robot travels to its desired destination using the A* path
planning algorithm, and uses basic obstacle avoidance tech-
niques to avoid both obstacles and other robots while doing
so.

We account for three malfunction types that the Hamster
can experience:
Sensing The camera/laser stops working. In such cases, the

operator can send the robot back to home base, where
the experiment operator can fix it.

Stuck The robot cannot move (for example due to an obsta-
cle), and needs the operator to help it get loose. In some
cases the Stuck malfunction is terminal.

WiFi The robot stops sending and receiving data. In such
cases the operator can mark the area as a “no entrance”
zone. Upon losing the WiFi signal, the robot is pro-
grammed to return to its last point of communication.

The GUI (See Figure 3) provides the operator with on-line
feedback from the cameras mounted on the robots (Thumb-
nail area), the 2D map of the terrain including the robots’
reported positions and their footprints, an enlarged camera
view of the robot of interest, an action control bar, and a joy-
stick widget. The action bar’s commands and joystick func-
tions are also available using keyboard and mouse shortcuts
inspired by strategic computer games. For example, in order
to set interest on a specific robot, the operator could click its
thumbnail camera or location on the map or could click on its
number on the keyboard. Double clicking will center the map
on the robot’s location.

5http://wiki.ros.org/amcl



Figure 3: GUI for operating 10 robots (see Figure 4 for the physical robots in action)

The operator can perform the following actions: (1) change
the mode for each of the robots (autonomous or manual), (2)
send a robot to a desired point on the map using the mouse’s
right click option (the robot would autonomously navigate to
the destination point, when possible), and (3) manually tele-
operate a robot using the joystick widget or the keyboard ar-
row keys. When a robot needs the operator’s attention—in
case of malfunctions or a detected green object that needs
classification—it changes its mode to manual and signals the
operator by blinking for 5 seconds and playing a prerecorded,
human-voice message in the operator’s headset. The opera-
tor can view the robots’ requests and provide solutions using
the alarm log. For the operator’s convenience, we maintain a
first-come-first-serve alarm log indicating the (active) alarms.
3.2 Our Agent
Our agent implements the MYAO Problem (Section 2.1) in
the SAR domain (Section 3.1). Recall that in order to cor-
rectly solve the optimization problem we need to estimate
Co(·), Po(·) and Ro(·). We consider situations where it is not
feasible to collect data on a specific operator. For example,
when an operator has very little experience in robot supervi-
sion and control, and where such experience is expensive to
attain. In particular, the agent should be able to support the
operator from its first interaction with the system. In such
cases, we suggest using generalized models.

Our agent uses three generalized models: an operator
model to approximate Co(·), a robot model to approximate
Ro(·) and a transition function to asses Po(·). We will first
define the generalized models and describe their training.

The operator model quantifies the operator’s abilities and
technique in terms of expected time to execute advice a in
state s. We use a general operator model C(·) independent of
specific O, and define C(·) as the expected time for complet-
ing a by an average operator.

The robot model quantifies the robots’ productivity in
terms of expected time to find the next green object. In or-
der to collect data on the robots’ behavior and productivity,
which can be very expensive as an operator is needed to sup-
port them, we suggest using a simulated utopic environment.
In a utopic environment, there will be no need for human in-

terference with the robots’ work, as the robots will never mal-
function. Accordingly, we defineR(·) to be the expected time
to find the next object in the utopic environment. That is, we
learn from a simulated utopic environment and we utilize the
gathered data to learn an advising policy which is tested in
both physical and simulated environments which are far from
utopian (Section 3.1). Similarly, we define P (·) as indepen-
dent of O. Recall that P (s, a, s′, C(s, a)) is the probability
for transitioning from s to s′ using advice a, given C(s, a).
As S is continuous, we cannot asses the actual P (·), yet given
s,a and C(s, a) we can consider 2 options; 1) a was per-
formed successfully and reached s′; 2) a was not performed
or was unsuccessful and the robots reached state s′′ 6= s′ (for
example, the operator was unable to fix a malfunction). Due
to the short time frames in which pieces of advice are exe-
cuted (SAR is a fast-paced task) , we assume that s′′ = s.
γ is defined as the probability for the task to end, given the

task’s expected duration. We assume a geometrical distribu-
tion, so γ is set to 1-(the calculation interval divided by the
expected task duration).

Combining the above models, the agent solves the opti-
mization problem (using Algorithm 1) online at every second
and provides the best possible advice in both textual format
(See Figure 3) as well as a prerecorded, human-voice mes-
sage. The presented advice might change at time t if the ad-
vice was successfully completed or when more urgent and
productive advice is available according to the current state
st, making our agent adaptive to the environment. We used
an efficient priority queue and updating methods to avoid long
calculations.
Training The Models
In order to train the above models, we used the Gazebo robot
simulation toolbox. We manually mapped an office building
floor (Environment 1) using a 30-meter laser and constructed
a 3D virtual model to scale. Also, we attained a 3D model of
“Assault” terrain from the CounterStrike source kit (Environ-
ment 2). These models were mounted to the Gazebo along-
side 10 Hamster robot models using ROS6. In our simulation ,
the robots experience malfunction according to a pre-defined

6http://www.ros.org/



malfunction schedule which determines when and which mal-
functions will occur to each robot.

Recall that we defined R(s) as the estimated time to find
the next green object given state s in a utopic environment.
Hence, to learn R(·), we ran 150 1-hour sessions on each en-
vironment. During these sessions, the robots autonomously
searched for 40 randomly placed green objects. In each ses-
sion we placed random obstacles and used a different number
of robots ranging from 1 to 10. To avoid the need for a hu-
man operator, we set an empty malfunction schedule and in-
structed the robots to avoid waiting for an operator’s response
on detected objects.

In order to construct a generic (non-negative) R(·) func-
tion, which can be used in different terrains (both in physical
and simulated deployment) we could not use terrain specific
features such as the robots’ positions, room sizes etc. Hence,
using the 150 sessions and a careful feature selection, we es-
timated R(s) using the following model:
From s, we extract the number of active robots (Active(s)),
the number of detected objects (Objects(s)), the average dis-
tance between robots (Distance(s)) and the minimal dis-
tance between a pair of robots (Minimal(s)) and calculate:
R(s) = α0 − α1 · ln(Active(s)) + α2 ·Objects(s)2−

α3 ·Objects(s)− α4 ·Distance(s)− α5 ·Minimal(s)

Where α0, . . . , α5 are learned using regression.
This form of function assumes that there is α0 time to

find an object, which is then reduced by the average distance
between robots and the minimal distance between a pair of
robots in a linear way. It also assumes that the number of ac-
tive robots reduces the expected time in a marginally decreas-
ing fashion. The objects detected so far increase the expected
time (as objects are harder to find), yet at the early stages of
the task finding the first objects is assumed to indicate that the
robots have achieved some effectiveness in terms of position.
This form of function was compared to more than 100 other
forms and yielded the greatest fit to the data we collected in
both simulated environments7. All parameters are assumed to
be positive, and in fact reached positive values.

To learn the operator’s model C(s, a) and transition func-
tion P (s, a, s′, C(s, a)), we first defineA—the action set that
the operator can take. A is also the advice set from which the
agent can propose advice. We defined A as the 96 instantia-
tions of the following 6 action schemes: “Tele-operate robot
i to a better position”, “Tele-operate robot i away from robot
j”, “Send robot i home for repairs”, “Robot i is stuck, try to
get it loose”, “Robot i detected an object”, “Robot i is wait-
ing for your command” and “Spread the robots around, they
are too close to each other” where i, j ∈ [1, . . . , 10].

To train the models, we recruited 30 Computer Science se-
nior undergraduate students, ranging in age from 18 to 34
(mean=25, s.d.=3.4) with similar demographics, to partici-
pate in a simulated SAR task equipped with a naı̈ve advising
agent. Given state s, our naı̈ve agent provided advice a such

7Some of the other functions that were tested included one or
more of the following modifications to the above function: the use
of Active(s) or Objects(s) as an additive variable; Active(s) as
having a multiplicative impact or Objects(s) as having an impact
depending on Distance(s) or Minimal(s).

that, upon completion, is expected to bring about a new state
s′, where R(s′) + 5sec < R(s). That is, the agent suggests
advice that, if completed successfully, will reduce (at least) 5
seconds from the expected time to find the next object. The
agent only offers advice which can be completed (for exam-
ple, if a robot is stuck it will not advise to teleoperate it). The
agent presents the advice in both textual format (See Figure
3) as well as a prerecorded, human-voice message. Note that
the agent filters and prioritizes robots’ requests and messages,
yet in a naı̈ve way.

For motivation, subjects were paid 1 NIS (about 25 cents)
per green object they found, and 0.5 NIS per advice to which
they adhere.

Surprisingly, all of the advice that our agents gave was ex-
ecuted and completed. Therefore, we set P (s, a, s′, C(s, a))
to be 1 whenever completing a advice is possible, and 0 oth-
erwise. When analyzing the operators’ behavior, we were
unable to find good cross-subject features that will help us to
predict the expected time it would take to complete advice.
Therefore, we used the mean execution time. That is, C(s, a)
is equal to the average execution time of a across our subjects.

Despite the major differences between our simulated,
utopian training environment and the test environments, our
approach yields solid advising policies used in both non-
utopian simulated environments and in physical deployment
robots. We note that given personalized models, Co(·), Po(·)
and Ro(·), our agent could also provide personalized advice.
However, in the scope of this work these models are unavail-
able.
Evaluation
To evaluate our agent, we used a within-subject experimen-
tal design where each subject performed the SAR task twice
(a week apart); once without the agent and once equipped
with the agent. We recruited 32 subjects to participate in the
simulated SAR task (16 per simulated environment (1s and
2s)) and 12 subjects participated in Environment 1p, total-
ing 44 subjects. Subjects who participated in the simulated
task were B.Sc. and M.Sc. Computer Science students, rang-
ing in age between 20 and 33 (mean 25), 14 females and 28
males, whereas the 10 participants in Environment 1p were
researchers and workers from our university. Subjects were
counter-balanced as to which condition was applied first.

Each subject was trained before each run; she underwent
a structured 1-on-1 hands-on tutorial on the system by our
research assistant and had to pass a short test. The test was
conducted to make sure the operator was capable of success-
fully completing the task. During the test, a subject was in
control of 3 robots and without any time limit had to find and
classify 2 green objects in the terrain while she encountered
3 simulated malfunctions.

The SAR task took 40 minutes (in simulation) and 15 min-
utes (in physical deployment) in which the subjects had to
search for the green objects placed in predefined (yet, ran-
domly selected) positions in the environment. The subjects
were motivated to find and classify as many green objects as
possible using a small monetary reward (1 NIS per object).
However, they did not receive any monetary reward for ac-
cepting the agent’s advice. To assure all malfunctions and ob-
jects are equally distributed in the environment, we used the



Figure 4: Part of Environment 1p during an experiment (see
Figure 3 for the operator’s point of view of this environment).

same malfunction schedule and object positions in both con-
ditions. After completing the task, subjects were asked to an-
swer a standard NASA-TLX questionnaire [Hart and Stave-
land, 1988].

Results reported in this section were found to be signifi-
cant using the Wilcoxon Signed-Rank Test (an alternative to
paired-sample t-test for dependent samples when the popula-
tion cannot be assumed to be normally distributed).

In Environment 1s (simulated office building), we placed
40 green objects around the office. We set a malfunction
schedule such that each robot encounters 1.5 malfunctions
(on average) during the simulation. All robots started from
the main entrance of the floor. Subjects were given 40 min-
utes to complete the task. The results show a statistically sig-
nificant increase in the average number of detected objects
by the robots (37.7 vs. 31.2 objects, p < 0.001) as well
as their average covered terrain (529 vs. 462 square meters,
p < 0.05) for the condition in which the agent was present.
Furthermore, a decrease in the average time that robots stay
idle (1540 vs. 1860 seconds, p < 0.05) and a reduced average
workload (55 vs. 62 TLX, p < 0.1) were also recorded.

In Environment 1p (real deployment in an office build-
ing), we scattered 20 green objects (see Figure 4). We set
a malfunction schedule such that every robot encounters 0.8
malfunctions (on average) during the deployment. Half of
the robots started from the main entrance of the office space,
whereas the other half started from the back entrance. Op-
erators were given 15 minutes to complete the task. A ma-
jor 100% increase in the average number of detected objects
was recorded (14.1 vs. 7 objects, p < 0.001) as well as an
increased average for covered terrain (462 vs. 305 square
meters, p < 0.05). A significant decrease in the average time
that robots stay idle (2720 vs. 3244 seconds,p < 0.05) and
a reduced average workload (55 vs. 62 TLX, p < 0.1) were
also recorded.

In Environment 2s (simulated open terrain), we scat-
tered 40 green objects (see Figure 1). We set a malfunction
schedule such that every robot encounters 2 malfunctions (on
average) during the simulation. All robots started from the
Assault deployment point (next to the Humvee). Operators

were given 40 minutes to complete the task. Again, the re-
sults show an increased average number of detected objects
by the robots (34.1 vs. 30.1 objects, p < 0.001) as well as
their average covered terrain (1144 vs. 845 square meters,
p < 0.05) for the condition in which the agent was present.
Furthermore, a significant decrease in the average time that
robots stay idle (1053 vs. 1455 seconds, p < 0.01) and a re-
duced average workload (57 vs. 61 TLX) were also recorded.

See Figure 5 for a graphical summary.
Overall, more than 95% of the advice was followed by the

subjects. All but 4 of the 44 subjects showed an increased
number of detected objects while equipped with our agent.
Despite having the option, none of the subjects turned off the
agent.

Figure 5: Detected objects across conditions and environ-
ments (error bars represent one standard error).

4 Conclusions and Future Work
In this work, we presented a new approach for the enhance-
ment of operator performance in multi-robot environments.
Our extensive empirical study, with 44 human subjects in
Search And Rescue (SAR) environments, both in simulation
and real deployment, shows that intelligent agents are able to
significantly enhance the performance of operators in com-
plex multi-robot environments, such as SAR.

Despite enduring high uncertainty and noisy signals, oper-
ators manage to take advantage of the agent’s advice in our
experiments more than 95% of the time and translate them
into a better performance than their benchmark scores, sug-
gesting that our agent gained the trust of the operators.

Surprisingly, even though the agent was trained in simu-
lated environments, its effect in physical deployment was sig-
nificantly higher than in simulated tests.

We conclude that the use of automated advising agents in
robotics, and especially in multi-robot environments, is es-
sential in bringing about better performance in real world
applications and enabling operators to control a larger num-
ber of robots simultaneously. Our methodology can accom-
modate future advancements in robotics hardware and algo-
rithms, and is not restricted to a certain type or quantity of
robots in the environment.

We intend to expand this methodology and use the insights
provided in this study to design and implement repeated-
interaction agents. These agents could learn from previous
tasks by the operator, in different terrains and environments,
and tailor an advising policy for her. As part of this work we
will examine the operator modeling for multiple interactions
and the ability to deduce insights from one environment to
another. Proceeding on a different path, we would also like to
explore how our agent could be adapted to help operators in
unknown and changing environments which require mapping
and map adaptation.



References
[Azaria et al., 2015] Amos Azaria, Zinovi Rabinovich, Sarit

Kraus, Claudia V Goldman, and Yaakov Gal. Strategic ad-
vice provision in repeated human-agent interactions. Jour-
nal of Autonomous Agents and Multi-Agent Systems, 2015.

[Besl and McKay, 1992] Paul J Besl and Neil D McKay.
Method for registration of 3-d shapes. In Robotics-DL ten-
tative, pages 586–606, 1992.

[Casper and Murphy, 2003] Jennifer Casper and Robin R.
Murphy. Human-robot interactions during the robot-
assisted urban search and rescue response at the world
trade center. IEEE Transactions on Systems, Man, and
Cybernetics, 33(3):367–385, 2003.

[Chen and Terrence, 2009] JYC Chen and PI Terrence. Ef-
fects of imperfect automation and individual differences
on concurrent performance of military and robotics tasks
in a simulated multitasking environment. Ergonomics,
52(8):907–920, 2009.

[Chen et al., 2011] Jessie YC Chen, Michael J Barnes, and
Caitlin Kenny. Effects of unreliable automation and in-
dividual differences on supervisory control of multiple
ground robots. In Proc. of HRI, pages 371–378. ACM,
2011.

[Chien et al., 2013] Shih-Yi Chien, Michael Lewis, Sid-
dharth Mehrotra, and Katia Sycara. Imperfect automa-
tion in scheduling operator attention on control of multi-
robots. In Proc. of the Human Factors and Ergonomics
Society Annual Meeting, volume 57, pages 1169–1173.
SAGE Publications, 2013.

[Cummings et al., 2007] ML Cummings, S Bruni,
S Mercier, and PJ Mitchell. Automation architecture
for single operator, multiple UAV command and control.
Technical report, DTIC Document, 2007.

[Elmalech et al., 2015] Avshalom Elmalech, David Sarne,
Avi Rosenfeld, and Eden Shalom Erez. When suboptimal
rules. In AAAI, 2015.

[Hart and Staveland, 1988] Sandra G Hart and Lowell E
Staveland. Development of nasa-tlx (task load index): Re-
sults of empirical and theoretical research. Advances in
psychology, 52:139–183, 1988.

[Korsah et al., 2013] G Ayorkor Korsah, Anthony Stentz,
and M Bernardine Dias. A comprehensive taxonomy for
multi-robot task allocation. The International Journal of
Robotics Research, 32(12):1495–1512, 2013.

[Kulkarni and Pompili, 2010] Indraneel S Kulkarni and
Dario Pompili. Task allocation for networked autonomous
underwater vehicles in critical missions. Selected Areas in
Communications, 28(5):716–727, 2010.

[Lewis, 2013] Michael Lewis. Human interaction with mul-
tiple remote robots. Reviews of Human Factors and Er-
gonomics, 9(1):131–174, 2013.

[Liu and Nejat, 2013] Yugang Liu and Goldie Nejat. Robotic
urban search and rescue: A survey from the control
perspective. Journal of Intelligent & Robotic Systems,
72(2):147–165, 2013.

[Miller, 2004] C Miller. Modeling human workload limita-
tions on multiple UAV control. In Proc. of the Human Fac-
tors and Ergonomics Society 47th Annual Meeting, pages
526–527, 2004.

[Morris et al., 2015] Robert Morris, Ernest Cross, Jerry
Franke, Mai Lee Chang, Waqar Malik, Garrett Heman,
Kerry McGuire, and Robert Garrett. Self-driving aircraft
towing vehicles: A preliminary report. In Artificial Intelli-
gence for Transportation Workshop (WAIT), 2015.

[Panganiban, 2013] April Rose Panganiban. Task load and
evaluative stress in a multiple UAV control simulation: The
protective effect of executive functioning ability. PhD the-
sis, University of Cincinnati, 2013.

[Parker and Zhang, 2002] Christopher Parker and Hong
Zhang. Robot collective construction by blind bulldoz-
ing. In IEEE Conference on Systems, Cybernetics and
Man, pages 177–195, 2002.

[Rosenfeld and Kraus, 2015] Ariel Rosenfeld and Sarit
Kraus. Providing arguments in discussions based on the
prediction of human argumentative behavior. In Proc. of
AAAI, pages 1320–1327, 2015.

[Rosenfeld et al., 2015] Ariel Rosenfeld, Amos Azaria, Sarit
Kraus, Claudia V Goldman, and Omer Tsimhoni. Adap-
tive advice in automobile climate control systems. In Proc.
of AAMAS, 2015.

[Rosenthal and Veloso, 2010] Stephanie Rosenthal and
Manuela Veloso. Using symbiotic relationships with
humans to help robots overcome limitations. In Workshop
for Collaborative Human/AI Control for Interactive
Experiences, 2010.

[Saez-Pons et al., 2010] Joan Saez-Pons, Lyuba Alboul,
Jacques Penders, and Leo Nomdedeu. Multi-robot team
formation control in the guardians project. Industrial
Robot: An International Journal, 37(4):372–383, 2010.

[Squire and Parasuraman, 2010] PN Squire and R Parasura-
man. Effects of automation and task load on task switching
during human supervision of multiple semi-autonomous
robots in a dynamic environment. Ergonomics, 53(8):951–
961, 2010.

[Velagapudi and Scerri, 2009] Prasanna Velagapudi and Paul
Scerri. Scaling human-robot systems. In CHI, 2009.

[Wang et al., 2009] Huadong Wang, Michael Lewis,
Prasanna Velagapudi, Paul Scerri, and Katia Sycara. How
search and its subtasks scale in n robots. In Proc. of HRI,
pages 141–148, 2009.

[White III and White, 1989] Chelsea C White III and Dou-
glas J White. Markov decision processes. European Jour-
nal of Operational Research, 39(1):1–16, 1989.

[Zheng et al., 2010] Xiaoming Zheng, Sven Koenig, David
Kempe, and Sonal Jain. Multirobot forest coverage for
weighted and unweighted terrain. IEEE Transactions on
Robotics, 26(6):1018–1031, 2010.


